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Abstract

A method to control the distortion function of the Ryskin and Leal (RL) orthogonal mesh generation system is pre-
sented. The proposed method considers the effects from not only the local orthogonal condition but also the local smooth-
ness condition (the geometry and the mesh size) on the distortion function. The distortion function is determined by both
the scale factors and the averaged scale factors of the constant mesh lines. Two adjustable parameters are used to control
the local balance of the orthogonality and the smoothness. The proposed method is successfully applied to several bench-
mark examples and the natural river channels with complex geometries.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

It is generally accepted that regardless of the discretization method, the quality of a computational mesh,
usually characterized by the orthogonality and the smoothness, has significant influences on the solutions of
the non-linear partial differential equations (PDE). Although extensive research (for examples, see [1–14]) has
been made on high quality mesh generation, the generation of orthogonal mapping with adequate smoothness
in geometrically complex domains still remains a challenge.

Many methodologies and techniques have been proposed for orthogonal mesh generation since late 1970s
(see [1–12,14]). Conformal mapping is the most well-known orthogonal mapping. It is simple, efficient and
easy to use. However, because it requires equal scale factors in all directions, the conformal mapping may
cause folded meshes at the concave boundaries. Ryskin and Leal [10] proposed a covariant Laplace equation
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system for orthogonal mapping (often referred as RL system). The RL system has been the objective of many
researchers (see [1–6,8,11,14]). The focus of these researches was the determination of the distortion function f,
which generally cannot be prescribed arbitrarily. Eça [5] classified three different treatments of the distortion
function: (1) calculate f from its definition at the boundaries and then obtain the values in the domain by inter-
polation or by solving a Laplace equation (see [10,11]); (2) specify a class of admissible functions for f based on
the quasi-conformal mapping theory to guarantee a unique solution (see [3,4]); and (3) calculate f from its def-
inition for the whole domain (see [1,2,5]).

According to its definition, the distribution of the distortion function f actually describes the mesh density
distribution. In the first two methods, the distortion function f is controlled algebraically or numerically, while
in the third method there are no controls on the distortion function f. Therefore, the above three methods can be
simply categorized into two groups: methods with controls on distortion function and methods without con-
trols on distortion function. For methods without controls on the distortion function f, the mesh density or
aspect ratio is controlled only by the local orthogonal condition and consequently its distribution in the whole
domain is not predicable. It is already pointed out by Eça [5], Akcelik et al. [1] and Zhang et al. [14] that the RL
system may cause serious mesh distortions or overlapping in complex geometries when using the ‘‘weak con-
straint’’ method with the specified boundary point distribution for all boundaries.

In this paper, a new method of formulating the distortion function is proposed. In addition to the local
scale factors, the globally averaged scale factors of the constant mesh lines are also used to evaluate the dis-
tortion function f. Local balance of the orthogonality and the smoothness is controlled by two adjustable
empirical parameters which are evaluated automatically based on the deviation from the local smoothness
condition. Several examples and applications are used to test and illustrate the proposed method. It is dem-
onstrated that this method is effective and easy to use.
2. Elliptic mesh generation systems

The RL system proposed by Ryskin and Leal [10] and the conformal mapping system are two classical ellip-
tic orthogonal mapping systems. The former, a covariant Laplace equation system, can be easily derived in a
way analogue to the Laplace equations for stream function and velocity potential function. In the RL system,
the orthogonal mapping between the physical coordinates (xi(”x, y), i = 1, 2) and the computational coordi-
nates (ni(”n, g), i = 1, 2) can be described using the following covariant equations:
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where the distortion factor f (also called aspect ratio) is defined as the ratio of the scale factors in n and g
directions:
f ¼ hg
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where xn = ox/on and so forth.
In Eq. (2), the metric tensor gij represents the physical features of a computational mesh and it is defined as

follows:
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Using the central difference scheme to discretize Eq. (1) at one typical mesh node (i, j), one can obtain:
F i;jxi;j ¼ fiþ1=2;jxiþ1;j þ fi�1=2;jxi�1;j þ
1

fi;jþ1=2

xi;jþ1 þ
1

fi;j�1=2

xi;j�1 ð4aÞ

F i;jyi;j ¼ fiþ1=2;jyiþ1;j þ fi�1=2;jyi�1;j þ
1

fi;jþ1=2

yi;jþ1 þ
1

fi;j�1=2

yi;j�1 ð4bÞ
where F i;j ¼ fiþ1=2;j þ fi�1=2;j þ 1
fi;jþ1=2

þ 1
fi;j�1=2

.

The conformal mapping system is well known with equal scale factors in all directions. That is,
hn ¼ hg; f ¼ hg

hn
¼ 1 ð5Þ
Eq. (5) is called the absolute smoothness condition. Substitution of Eq. (5) into Eq. (1) leads to the following
conformal mapping system:
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The conformal mapping system defined by Eq. (6) can be considered as a special case of the RL system with
f = 1 satisfied in the whole domain.

To resolve the mesh distortion and overlapping problems, Zhang et al. [14] proposed another method to
control the distortion function. The distortion function is first calculated from its definition in the entire
domain and then a contribution factor which is evaluated by the local scale factor is used to confine the effects
of the distortion function. Their method can be described as follows:
f � ¼ f � ha
n ðin n directionÞ ð7aÞ

1

f

� ��
¼ 1

f
� ha

g ðin g directionÞ ð7bÞ� �

where f is the distortion function calculated from its definition, f* and 1

f

�
are the actual distortion function

during the computation, ha
n and ha

g are the so-called contribution factors, and a is an adjustable exponential
parameter.

3. Current study

The RL system emphasizes on the orthogonality but ignores the smoothness, while the conformal mapping
is too strict in the smoothness. To improve their disadvantages, a new method is proposed in the current study.

3.1. Averaged scale factors

Let us consider a simple rectangular domain with a width of W (n direction), a height of H(g direction), and
a mesh size of N · M. A uniform nodal distribution is assumed along all the boundaries. For this simple
domain, the constraint of the local orthogonal condition on the distortion function is already excluded,
and the same resulting mesh can be obtained by the RL and conformal mapping generation systems. For inter-
nal mesh nodes, the final distortion functions can be obtained as follows:
f ¼ hg

hn
¼ H=ðM � 1Þ

W =ðN � 1Þ ð8Þ
where the local scale factors hn and hg are actually equal to the averaged scale factors.
Defined by the ratio of the scale factors in two different directions, the distortion function is obviously

related to both the geometry of the domain and the mesh size. As for geometrically complex domains, the final
distortion function of the resulting mesh is not predicable due to the fact that it is controlled only by the local
orthogonal condition. For the conformal system, the strict absolute smoothness condition (f = 1) is difficult to
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be satisfied for the whole domain, although this condition is enforced in the derivation of the generation
equations.

The current study proposes that the averaged scale factors along constant mesh lines be used to evaluate the
distortion function. For one typical mesh node (i, j), one can obtain:
fi;j ¼
ðhgÞj
ðhnÞi

ð9Þ

ðhnÞi ¼
1

N j � 2

XNj�1

j¼2

ðhnÞi;j ð10aÞ
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XNi�1

i¼2
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where fi;j is the local averaged distortion function, ðhnÞi and ðhgÞj are the global averaged scale factors at n = i

line and at g = j line, respectively; and, Ni and Nj are the total number of mesh lines in n and g directions.
Eq. (9) implies that the following smoothness conditions are enforced:
ðhnÞi;j ¼ ðhnÞi ð11aÞ
ðhgÞi;j ¼ ðhgÞj ð11bÞ
Correspondingly, Eqs. (11a) and (11b) are called the relative smoothness conditions in n and g directions,
respectively. Compared with its original definition (Eq. (2)), the distortion function evaluated by Eq. (9) con-
siders both the global effects of the geometry and the mesh size. Consequently, the relaxed local orthogonal
condition results in less orthogonal but smoother (nearly orthogonal) meshes. As demonstrated in [14], a cer-
tain degree of compromise of the orthogonality for improving smoothness is necessary and worthwhile for
geometrically complex domains, in which it is difficult to generate an acceptable mesh without mesh distortion
and overlapping using the RL system. Compared with the constant distortion function (absolute smoothness

condition) enforced in the conformal mapping system, Eq. (9) replaces the strict smoothness condition with the
relative smoothness conditions.

Eq. (9) controls the scale factors to enforce the local smoothness in both directions. In cases only one of the
directions needs to be controlled, one can obtain the following two alternatives which control the scale factors
only in n direction or g direction, respectively:
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Fig. 1. Effects of rn and rg on mesh quality.
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To control the n direction : fi;j ¼
ðhgÞi;j
ðhnÞi

ð12Þ

To control the g direction : fi;j ¼
ðhgÞj
ðhnÞi;j

ð13Þ
3.2. Balance of orthogonality and smoothness

It has been shown the averaged scale factors ðhnÞi and ðhgÞj defined by Eq. (10) can characterize the local
smoothness; similarly the local scale factors defined by Eq. (2b) can characterize the local orthogonality.
Therefore, the local balance of the orthogonality and the smoothness can be controlled through the ratio
between the averaged scale factors and the local scale factors. This inspires an immediate extension of
Eqs. (9), (12) and (13):
Fig. 2. Meshes in domain A.

(A1) RL with rn = 0 and rg = 0.

(A3) RL with contribution factors.

(A2) Conformal mapping.

(A4) RL with rn = 0.5 and rg = 0.5.



Fig. 2 (continued)
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(A7) RL with rn = 1 and rg = 0.
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(A6) RL with rn = 0 and rg = 1.
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(A8) RL with rn and rg evaluated by Eq. (15).
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(A5) RL with rn = 1 and rg = 1.
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fi;j ¼
ðhgÞj � rg þ ðhgÞi;j � ð1� rgÞ
ðhnÞi � rn þ ðhnÞi;j � ð1� rnÞ

ð14Þ
where rg and rn are two adjustable parameters within the range of [0, 1] for controlling the ratio between the
averaged scale factors and the local scale factors.

With the two empirical parameters rg and rn, Eq. (14) is more capable and flexible than its predecessors –
Eqs. (9), (12) and (13). Eqs. (2), (9), (12) and (13) can be obtained from Eq. (14) by specifying different values
of these two parameters. With both parameters set to be zero, Eq. (2) – the original definition of the distortion
function can be obtained; to obtain Eq. (9), both of them should be equal to 1; and, if either one is equal to 1
and another is equal to 0, Eq. (12) or (13) can be derived. In case the relative smoothness conditions, the local
scale factors are equal to the averaged scale factors, are satisfied (not enforced), these two parameters will van-
ish automatically.
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Obviously, the parameters rg and rn can be user-specified. It can be either constant or have a specified dis-
tribution through the whole domain. Although the manual evaluation is flexible, the evaluation process may
be tedious in order to obtain a good resulting mesh. In the current study, an automatic evaluation mechanism
is established for these two empirical parameters.
½rn�i;j ¼
jðhnÞi;j � ðhnÞij
ðhnÞi;j þ ðhnÞi

ð15aÞ

½rg�i;j ¼
jðhgÞi;j � ðhgÞjj
ðhgÞi;j þ ðhgÞj

ð15bÞ
In Eq. (15), the difference between the local scale factor and the averaged scale factor measures the devia-
tion from the local relative smoothness condition. The parameters rg and rn, evaluated by the ratio of the
difference and the sum of the local scale factors and the averaged scale factor in the corresponding directions,
Fig. 3. Meshes in domain B.

(B1) RL with rn = 0 and rg = 0. (B2) Conformal mapping.

(B3) RL with contribution factors.
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(B4) RL with rn = 0.5 and rg = 0.5.
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(B5) RL with rn = 1 and rg = 1.
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(B8) RL with rn and rg evaluated by Eq. (15).
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(B6) RL with rn = 0 and rg = 1.
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(B7) RL with rn = 1 and rg = 0.
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are actually the indicators of the local relative smoothness condition. Smaller values of these parameters indi-
cate improved local smoothness and reduced effects of the average scale factors and vice versa. The zero value
of these parameters implies that the local relative smoothness conditions are satisfied. With this adjustment
mechanism, a global balance between the orthogonality and the smoothness can be reached.
3.3. Comparisons with previous studies

As stated previously, Akcelik et al. [1] (RL with source terms) and Zhang et al. [14] (RL with contribution
factors) modified the original RL system in order to resolve the mesh distortion and overlapping problems in
geometrically complex domains when using ‘‘weak constraint’’ method [10]. The former introduced the inho-
mogeneous source terms with a parameter to tune their intensities, while the latter introduced a contribution
factor to confine the uncontrolled growth of the distortion function. An exponential parameter was used to
adjust the effects of the contribution factors.



Table 1
Evaluation of meshes in domains A and B

Domain Case Size ADO MDO AAR MAR AVS MVS rn rg a

A A1 41 · 41 0.07 0.62 4.86 33.9 1.07 1.25 0 0 –
A2 41 · 41 3.18 11.62 2.98 411.3 1.15 20.7 – – –
A3 41 · 41 0.15 0.72 3.57 13.7 1.04 1.25 – – 0.01
A4 41 · 41 3.10 7.27 2.39 30.08 1.04 1.46 0.5 0.5 –
A5 41 · 41 3.74 14.46 2.34 68.38 1.04 3.45 1 1 –
A6 41 · 41 3.77 6.76 2.83 16.34 1.09 2.58 0 1 –
A7 41 · 41 1.32 6.16 2545 70,129 1.25 3.91 1 0 –
A8 41 · 41 2.16 4.76 2.47 12.1 1.05 1.36 – – –

B B1 30 · 30 0.07 4.28 4.22 13.0 1.25 1.42 0 0 –
B2 30 · 30 4.63 14.6 1.19 1.61 1.03 1.07 – – –
B3 30 · 30 0.19 8.0 3.31 9.4 1.22 1.39 – – 0.01
B4 30 · 30 2.65 14.45 1.51 2.63 1.08 1.18 0.5 0.5 –
B5 30 · 30 2.82 14.38 1.53 2.44 1.05 1.12 1 1 –
B6 30 · 30 0.72 14.26 31.4 816. 1.39 3.09 0 1 –
B7 30 · 30 0.72 14.26 31.4 816. 1.39 3.09 1 0 –
B8 30 · 30 1.84 14.22 1.74 3.36 1.10 1.31 – – –
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The following points differentiate the above two methods and the present method:

(1) The RL with source terms is a Poisson equation system, while the RL with contribution factors and the
present method remain a Laplace equation system.

(2) In the cases of RL with source terms and the RL with contribution factors, the distortion function is
calculated from its definition – Eq. (2), while in the present method the distortion function is evaluated
by a composite function constructed with the scale factors and the averaged scale factors – Eq. (14).

(3) The RL with source terms does not have controls on the distortion function, but the RL with contribu-
tion factors and the present method do.

(4) The two parameters in the present method are used to control the local balance of orthogonality and
smoothness, while the parameters in the other two methods are used to control the intensities of the
source terms and the contribution factors, respectively.

(5) An automatic evaluation mechanism has been established for the two parameters in the present method,
while the parameters in the other two methods must be user-specified.

(6) Compared to the parameters in the RL with contribution factors and the present method, the parameter
in the RL with source terms is unbounded, which makes it difficult to use.

Since the RL with contribution factors and the present method fall into the same category: methods with
controls on the distortion function, further comparisons will be conducted for them using examples.
4. Solution process

The RL system defined by Eq. (1) is highly non-linear. In the current study, an iterative method similar to
that of [5] is used to solve the linear equation (4). The iterative algorithm is simply listed as follows:

1. Define the boundaries of a computational domain and use an algebraic method to generate an initial mesh.
2. Evaluate the parameters rg and rn manually or using Eq. (15).
3. Calculate the distortion function f from Eq. (14).
4. Solve Eq. (4) with fixed f obtained from step 3.
5. Update the mesh and check if the convergence condition is satisfied. If not, repeat steps from 2

through 5.
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Two convergence criterions are used and the satisfaction of either one will stop the computation. The first
one is the maximum difference between the grid coordinates in consecutive steps and the second one is the
maximum relative difference of the distortion function f between consecutive iterations. They are defined as
follows:
max
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxn

i;j � xn�1
i;j Þ

2 þ ðyn
i;j � yn�1

i;j Þ
2

q� �
< 10�6 ð16Þ

max
f n � f n�1

f n

� �
< 10�6 ð17Þ
where n is the iteration number.
Fig. 4. Meshes in domain C.

(C1) RL with rn = 0 and rg = 0. (C2) Conformal mapping.

(C3) RL with contribution factors. (C4) RL with rn = 0.5 and rg = 0.5.
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(C5) RL with rn = 1 and rg = 1.

η

ξ

(C6) RL with rn = 0 and rg = 1.
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(C7) RL with rn = 1 and rg = 0.
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(C8) RL with rn and rg evaluated by Eq. (15).
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5. Boundary conditions

The boundary conditions have significant influences on the resulting meshes. Actually, selecting the appro-
priate boundary conditions to guarantee a unique solution of the RL system remains a big concern (see
[6,8,10]). Two types of boundary conditions are available: the Dirichlet boundary condition with the fixed
specified nodal distribution along the boundaries, and the Dirichlet-Neumann boundary condition (also called
sliding boundary condition) which allows the mesh nodes slide along the boundaries (Dirichlet) to satisfy the
Neumann condition.

In the present study, only the Dirichlet boundary conditions are used for all the boundaries to test the pro-
posed method. There is no theoretical proof that the application of the Dirchlet boundary condition would
guarantee a unique solution. However, as demonstrated numerically by Eça [5] and Zhang et al. [14], a con-
verged solution of the RL system is possible with this type of the boundary condition.



Fig. 5. Meshes in domain D.

(D1) RL with rn = 0 and rg = 0. (D2) Conformal mapping.

(D3) RL with contribution factors.
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(D4) RL with rn = 0.5 and rg = 0.5.
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(D5) RL with rn = 1 and rg = 1.
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(D6) RL with rn = 0 and rg = 1.
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(D8) RL with rn and rg evaluated by Eq. (15).
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(D7) RL with rn = 1 and rg = 0.
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6. Examples

Two symmetric domains (A and B) and two asymmetric domains (C and D) commonly used in the liter-
atures [1,2,4–6,8,14] are selected to test and illustrate the proposed method. They are defined as follows:

(1) Symmetric domain A (with concave boundary) is bounded by x = 0, x = 1, y = 0, and
y = 0.75 + 0.25sin(p(0.5 + 2x)).

(2) Symmetric domain B is a unit square with one half-circle on each side.
(3) Asymmetric domain C is bounded by x = 0, y = 0, y = 1, and x ¼ 1

2
þ 1

6
cosðpyÞ.

(4) Asymmetric domain D is bounded by two-half circles and x axis. The radius of the small circle is one-
third of that of the big one.

The proposed method will be compared with the original RL, the conformal mapping, the RL with
contribution factors proposed by Zhang et al. [14] using the above domains. The mesh quality is evaluated
quantitatively by the standard academic criterions, such as maximum deviation orthogonality (MDO),
averaged deviation from orthogonality (ADO), maximum grid aspect ratio (MAR), and averaged grid
aspect ratio (AAR). ADO and MDO are used to measure the orthogonality, while AAR and MAR
measure the global smoothness. In the present study, the local smoothness is measured by maximum
ξ

η

ξ

η

Fig. 6. Layout of domains E and F.

Table 2
Evaluation of meshes in domains C and D

Domain Case Size ADO MDO AAR MAR AVS MVS rn rg a

C C1 41 · 41 0.37 1.11 3.98 46.1 1.1 1.5 0 0 –
C2 41 · 41 2.33 6.32 2.17 5.11 1.01 1.17 – – –
C3 41 · 41 1.98 3.42 2.25 3.75 1.02 1.09 – – 0.2
C4 41 · 41 2.26 3.16 2.19 3.68 1.01 1.02 0.5 0.5 –
C5 41 · 41 2.23 5.27 2.18 3.66 1.01 1.02 1 1 –
C6 41 · 41 2.09 4.43 2.57 21.38 1.03 1.32 0 1 –
C7 41 · 41 2.29 3.40 2.18 3.30 1.01 1.01 1 0 –
C8 41 · 41 1.97 2.86 2.28 4.02 1.02 1.08 – – –

D D1 41 · 41 0.62 3.70 147 5373 1.25 3.56 0 0 –
D2 41 · 41 7.2 14.48 3.04 64.5 1.09 3.06 – – –
D3 41 · 41 3.22 13.2 3.06 8.36 1.05 1.42 – – 0.6
D4 41 · 41 3.58 11.25 3.53 10.56 1.01 1.13 0.5 0.5 –
D5 41 · 41 3.79 11.6 3.40 10.15 1.01 1.04 1 1 –
D6 41 · 41 3.68 11.84 3.40 9.75 1.01 1.08 0 1 –
D7 41 · 41 2.84 9.95 658.2 55,479 1.14 2.71 1 0 –
D8 41 · 41 2.96 10.67 3.97 11.14 1.04 1.49 – – –
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variation of grid sizes (MVS) and averaged variation of grid sizes (AVS). These six indicators are defined
as follows:
MDO ¼ maxðhi;jÞ ð18aÞ

ADO ¼ 1

ðNi � 2Þ
1

ðN j � 2Þ
XNi�1

2

XNj�1

2

hi;j ð18bÞ

MAR ¼ max max fi;j;
1

fi;j

� �� 	
ð19aÞ

AAR ¼ 1

ðNi � 2Þ
1

ðN j � 2Þ
XNi�1

2

XNj�1

2

max fi;j;
1

fi;j

� �
ð19bÞ
Fig. 7. Meshes in domain E (Global).

(E1) RL with rn = 0 and rg = 0.

(E2) Conformal mapping.

(E3) RL with contribution factors. (E4) RL with rn = 0.5 and rg = 0.5.



Fig. 7 (continued)

(E5) RL withrn= 1 andrg= 1.(E6) RL withrn= 0 andrg= 1.

(E8) RL with rn and rg evaluated by Eq. (15).

(E7) RL withrn= 1 andrg= 0.
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MVS ¼ maxfmax½ðSnÞi;j; ðSgÞi;j�g ð20aÞ

AVS ¼ 1

ðN i � 2Þ
1

ðNj � 2Þ
XNi�1

2

XNj�1

2

max½ðSnÞi;j; ðSgÞi;j� ð20bÞ
where Ni and Nj are the maximum number of mesh lines in n and g directions respectively; h is defined as
hi;j ¼ arccos
g12

hnhg

� �
i;j

� 90

�����
����� ð21Þ
And, Sn and Sg, the variation of grid sizes in n and g directions, are defined by the following equation:
ðSnÞi;j ¼ max
ðhnÞiþ1=2;j

ðhnÞi�1=2;j

;
ðhnÞi�1=2;j

ðhnÞiþ1=2;j

" #
ð22aÞ
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ðSgÞi;j ¼ max
ðhgÞi;jþ1=2

ðhgÞi;j�1=2

;
ðhgÞi;j�1=2

ðhgÞi;jþ1=2

" #
ð22bÞ
For all examples, the initial meshes with uniform nodal distribution along the four boundaries, namely, top
boundary, bottom boundary, left boundary, and right boundary, were generated by the algebraic method.
And, the Dirichlet boundary condition is applied in all boundaries. In the above domains, the n direction
is from left to right, while the g direction is from bottom to top.

6.1. Sensitivity analysis

Domain D is used to study the effects of rn and rg on the mesh quality. For simplification purpose, these two
parameters are assumed to be equal. Different values of these two parameters ranging from 0.01 to 0.9 were
used for mesh generation in this domain.

Fig. 1 illustrates the relationships between these two parameters (rn and rg) and the indicators (ADO,
MDO, AAR, MAR, AVS and MVS) of the mesh quality. As expected, with rn and rg increasing, ADO
and MDO increase, and AAR, MAR, AVS, and MVS decrease. Because the increase of rn and rg means more
deviation from the original RL, it leads to a less orthogonal but smoother mesh.
Fig. 8. Meshes in domain E (local).

(E1) RL with rn = 0 and rg = 0.

(E2) Conformal mapping.

(E3) RL with contribution factors. (E4) RL with rn = 0.5 and rg = 0.5.



Fig. 8 (continued)
A strong variation region of the mesh quality can be identified – rn, rg 2 [0, 0.1]. The mesh quality changes
rapidly within this region and mildly beyond it.

6.2. Symmetric domains

Meshes in domains A and B produced by different methods are illustrated in Figs. 2 and 3, respectively. The
quality of final meshes in these two domains is summarized in Table 1.

The conformal mapping generated the folded meshes at the concave boundary of domain A (case A2) and
at the four corners of domain B (case B2), while the original RL without controls on distortion function
(rn = 0 and rg = 0) caused the squeezed meshes at the concave boundary of domain A (case A1) and at the
center of domain B (case B1), respectively. As stated previously, the folded meshes resulted from the strict
local smoothness condition of the conformal mapping, and the squeezed meshes were caused by the strict local
orthogonal condition of the RL.

The RL with controls on the scale factors in both directions (rn = 0.5 and rg = 0.5, and rn = 1 and rg = 1)
relaxed the local orthogonal condition significantly and generated much smoother meshes than the original
RL for both domains. However, with the full controls (rn = 1 and rg = 1), too much smoothness was pro-
duced, and the folded meshes occurred in both domains (cases A5 and B5). With less controls (rn = 0.5
and rg = 0.5), this problem was resolved in domain A (case A4) and alleviated in domain B (case B4).

The controls on the scale factor in only one direction can only improve smoothness in the correspond-
ing direction. For domain A, the RL with controls in g direction (rn = 0 and rg = 1) resolved the squeezed
meshes at the concave boundary but caused mesh lines to be contracted at the left and right boundaries
(case A6), and the RL with controls in n direction (rn = 1 and rg = 0) produced even worse mesh with



(F1) RL withrn= 0 andrg= 0.
mesh overlapping at the concave boundary (case A7) . For domain B, the RL with controls in one direc-
tion resulted in the squeezed meshes at the center in the other direction without controls (cases B6 and
B7).

The RL with automatic controls on the local balance of the orthogonality and the smoothness (rn and rg

evaluated by Eq. (15)) and the RL with contribution factors have similar performances in domain A.
Although the latter is better in orthogonality (case A3), the former produced the mesh with best overall quality
for domain A (case A8). In domain B, the former failed to generate a mesh without folding due to the four
singularities (case B8), but the latter succeeded (case B3).

6.3. Asymmetric domains

Meshes in domains C and D are displayed in Figs. 4 and 5, and Table 2 lists the evaluation report of mesh
quality. As can be seen, serious mesh distortions and overlapping occurred in both domains when using the
Fig. 9. Meshes in domain F (global).



Fig. 9 (continued)

(F5) RL withrn= 1 and

rg= 1.

(F6) RL with rn = 0 and rg = 1.

(F8) RL withrnandrgevaluated by Eq.(15).
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original RL (cases C1 and D1), although the best orthogonal meshes were obtained. The conformal mapping
failed to generate non-folded mesh in domain D (case D2).

In both domains, the RL with contribution factors, the RL with controls on the scale factors in both direc-
tions (rn = 0.5 and rg = 0.5, and rn = 1 and rg = 1) and the RL with rn and rg evaluated by Eq. (15) successfully
removed the skewed and squeezed meshes. The RL with rn and rg evaluated by Eq. (15) (cases C8 and D8)
produced better meshes both in orthogonality and smoothness than the others (cases C3, C4, C5, D3, D4,
and D5).

The fixed nodal distribution along the right curved boundary of domain C in g direction and the two cir-
cular boundaries of domain D in n direction resulted in highly distorted meshes when using the original RL.
The RL with controls in the corresponding direction (cases C7 and D6) enforces the smoothness in that direc-
tion and hence generated smooth meshes without distortions and overlapping in both domains. Without con-
trols in the corresponding direction (cases C6 and D7) caused the mesh lines contract to the right boundary of
domain C and the top boundary of domain D, respectively.
(F7) RL withr n = 1 andr g = 0.



(F3) RL with contribution factors.(F4) RL withrn= 0.5 andrg= 0.5.
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7. Applications

To further challenge the proposed method, two natural river channels (domains E and F) are selected for
mesh generation. The layouts of the selected channels are displayed in Fig. 6. In addition to the irregular
boundaries, there are one spur dike in domain E and 19 spur dikes in domain F, which makes the orthogonal
mesh generation a quite difficult task. Since the channel boundaries are very complex, the application of the
sliding boundary conditions becomes difficult. Therefore, the Dirichlet boundary conditions were used for all
boundaries in both domains. The initial meshes with non-uniform nodal distribution along the boundaries
were created by the algebraic method.

Figs. 7 and 9 illustrate the global resulting meshes of these two domains, and Figs. 8 and 10 display the local
meshes in the selected circled zones. The evaluation report is summarized in Table 3. Not surprisingly, the
original RL failed in both domains in which highly distorted regions existed (cases E1 and F1). As for the
conformal mapping, although the mesh smoothness was globally improved, the folded meshes occurred in
the circled zones of both domains (cases E2 and F2).
Fig. 10. Meshes in domain F (local).

(F1) RL with rn = 0 and rg = 0. (F2) Conformal mapping.



Fig. 10 (continued)

(F5)

(F7) RL with rn = 1 and rg = 0.

(F6) RL with rn = 0 and rg = 1.

(F8)

rgevaluated by Eq.(15).
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Using the RL with controls in only one direction, the mesh distortion was removed from both domains.
However, the RL with controls in g direction (rn = 0 and rg = 1) caused the mesh lines contracted to the
tip of the dike of domain E in n direction (case E6). It generated smooth mesh but with little mesh folding
at the tip of the oblique dikes in domain F (case F6). As for the RL with controls in n direction (rn = 1
and rg = 0), it resulted in the squeezed meshes at the center of domain E (case E7) and at the oblique dikes
of domain F (case F7).

In domain E, the RL with contribution factors, the RL with controls on two directions (rn = 0.5 and
rg = 0.5, and rn = 1 and rg = 1) and the RL with rn and rg evaluated by Eq. (15) succeeded in producing
smooth meshes without distortion, overlapping and folding (cases E3, E4, E5 and E8). In domain F, the
RL with controls on both directions generated the folded meshes at the tips of the oblique dikes (cases
F4 and F5), while the RL with contribution factors and the RL with rn and rg evaluated by Eq. (15) suc-
cessfully resolved this problem (cases F3 and F8). In both domains, the meshes with best overall quality
(cases E8 and F8) were obtained from the RL with controls on the local balance of the orthogonality
and the smoothness.
RL withrn= 1 andrg= 1 .RL withrnand



Table 3
Evaluation of meshes in domains E and F

Domain Case Size ADO MDO AAR MAR AVS MVS rn rg a

E E1 41 · 137 0.29 3.90 2.30 65.1 1.11 2.02 0 0 –
E2 41 · 137 2.69 14.46 1.37 12.8 1.05 2.37 – – –
E3 41 · 137 1.48 7.76 1.58 9.3 1.07 1.88 – – 0.24
E4 41 · 137 2.24 13.56 1.40 5.90 1.06 1.70 0.5 0.5 –
E5 41 · 137 2.72 14.27 1.42 8.0 1.06 2.19 1 1 –
E6 41 · 137 1.52 10.98 2.48 263.7 1.14 3.31 0 1 –
E7 41 · 137 2.40 14.40 1.72 11.62 1.11 8.54 1 0 –
E8 41 · 137 1.70 12.0 1.54 5.09 1.07 2.0 – – –

F F1 30 · 374 0.43 5.70 2.81 161.4 1.10 2.45 0 0 –
F2 30 · 374 2.55 14.48 1.78 8.25 1.02 2.18 – – –
F3 30 · 374 2.08 14.37 1.86 10.13 1.03 1.60 – – 0.52
F4 30 · 374 2.27 14.46 1.81 6.60 1.02 1.60 0.5 0.5 –
F5 30 · 374 2.53 14.44 1.78 6.74 1.02 1.89 1 1 –
F6 30 · 374 2.33 14.47 1.79 7.14 1.05 1.88 0 1 –
F7 30 · 374 2.02 14.14 3.31 468.4 1.06 3.72 1 0 –
F8 30 · 374 1.82 14.46 1.90 9.55 1.05 1.85 – – –
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8. Conclusions

In computational fluids dynamics (CFD), practical fluids flows are often associated with complex domains,
in which the absolutely orthogonal mesh generation becomes difficult or even impossible when using the clas-
sical generation systems – the RL system and the conformal mapping. In the RL system, the distortion func-
tion is controlled only by the local orthogonal conditions, which results in the unpredictable distribution of the
mesh density. In the conformal mapping system, the distortion function is enforced with a constant value. To
improve their disadvantages, a new method to control the distortion function has been developed.

In the proposed method, both the averaged scale factors and the local scale factors are used to evaluate the
distortion function. It therefore takes into account the effects of both the local orthogonal condition charac-
terized by the local scale factors, and the local smoothness conditions (the geometry and the mesh size) char-
acterized by the averaged scale factors. In this way, both the strict local orthogonal condition of the RL system
and the strict local smoothness condition of the conformal mapping system are relaxed and consequently only
nearly orthogonal meshes but with adequate smoothness can be obtained.

Two adjustable parameters rn and rg are used to control the ratio of the local scale factors and the averaged
scale factors in n and g directions and hence the local balance of the orthogonality and the smoothness. These
two parameters can either be user-specified with the constant values through the whole domain or automat-
ically evaluated by the indicators of the local relative smoothness conditions which are defined as the ratio of
the difference and the sum of the local scale factors and the averaged scale factors. The smoother the mesh is,
the smaller these two parameters are, and the smaller the effects of the averaged scale factors on the distortion
function will be.

Several benchmark examples are selected to demonstrate and compare the proposed method with the ori-
ginal RL system, the conformal mapping system and the RL with contribution factors proposed by Zhang
et al. [14]. The controls on both directions generally improved the global smoothness significantly, but it
caused slightly folded meshes in some domains. With controls on only one direction, the smoothness in the
corresponding direction can be improved. The automatic controls on the local balance of the orthogonality
and the smoothness produced meshes with the best overall quality. For most cases, the RL with contribution
factors have similar performances to the RL with automatic controls on the distortion fucntion. All methods
except the RL with contribution factors failed to generate a good mesh without distortions, overlapping and
folding in domain B due to the four singularity corners. The sensitivity analysis in domain D shows that the
parameters rn and rg have significant effects on the mesh quality in the range of [0, 0.1], and out of this range
these two parameters have much less influence.
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The proposed method was also applied to two natural channels with complex geometries. It has been shown
that the proposed method is capable of generating nearly orthogonal meshes with a good balance of the
orthogonality and the smoothness in these two geometrically complex domains where the original RL system
and the conformal mapping system have failed.
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